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1. Introduction 

The computational shock multiphysics code ALEGRA is capable of performing 
multidimensional numerical simulations within an arbitrary Lagrangian-Eulerian framework.1 
ALEGRA simulations produce an abundance of information on various transient quantities, 
including material properties, scalar variables, and tensor variables. The analysis of specific 
time-dependent quantities, however, can be difficult. This problem is compounded when the 
measurement location of the quantity of interest is not fixed. Often, large ALEGRA simulations 
require massively parallel processing. When massively parallel processing is employed, 
specialized methods of assembling and then extracting information from an output database are 
required for post-processing. Utility scripts, such as the specialized history viewer (SHIV), can 
be used to analyze the transient data of a material characteristic, a global variable, or a particular 
tracer location via a HISPLT database2; however, monitoring particular tracer locations or global 
material characteristics in many cases is not sufficient to capture the transient quantities of a 
material traveling through an Eulerian mesh. Visualization software such as VisIt presents an 
alternative method to examine data through the use of EXODUS databases.3 In addition, VisIt 
visualization software allows the user to write macros that can assist in automating the analysis 
of complex data. This report details an automated method of extracting transient quantities that 
vary spatially from an EXODUS database using a VisIt macro written in the Python 
programming language.  

2. Macro Description and Implementation 

The impetus for creating the macro described in this report came from a repeated analysis of the 
simulated depth of penetration (DOP) of a shaped charge jet (SCJ). Accordingly, the macro 
considered here will be based on extracting the location and temperature of the tip of an SCJ as it 
approaches and penetrates rolled homogenous armor (RHA). The macro was written for VisIt 
version 2.5.0, and the simulation that was analyzed used a two-dimensional (2-D) axisymmetric 
geometry with eight elements per millimeter. A 2-D geometry simplifies the data extraction 
somewhat, but with a small amount of effort, the technique described here can easily be extended 
to more complicated geometries. 

                                                 
1 Robinson, A. C.; Carroll, S. K.; Drake, R. R.; Hensinger, D. M.; Labreche, D. A.; Love, E.; Luchini, C. B.; Mosso, S. J.; 
Niederhaus, J. H. J.; Petney, S. V.; Rider, W. J.; Strack, E.; Weirs, V. G.; Wong, M. K.; Voth, T. E.; Ober, C. C.; Haill, T. A. 
ALEGRA User Manual: Version 5.0.; SAND2010-4796; Sandia National Laboratory: Albuquerque, NM, 2010. 
2 Thompson, S. L.; Kmetyk, L. N. HISPLT, A Time-History Graphics; Sandia National Laboratories: Albuquerque, NM, 
September 1991. Revised April 1994. 
3 Schoof, L. A.; Yarberry, V. R. EXODUS II: A Finite Element Data; Sandia National Laboratories: Albuquerque, NM, 1994. 



 

2 

All of the information extracted by this macro can also be extracted manually by interactively 
selecting a zone or node of interest using VisIt’s pick mode. Building a set of spatially varying 
data as a function of time using this method quickly becomes tedious because the user must 
select a different node or zone at each timestep and then record the location and temperature. 
Additionally, VisIt has built-in functionality that allows a user to query certain values over time.  

The query-over-time function is useful for monitoring the value of a variable at a specific cell or 
examining global maxima and minima over a range of timesteps. For example, the query-over-
time function could be used if one were interested in knowing the density of a particular cell at 
each timestep. Queries over time, however, cannot easily track the location of a particular 
material and then return information on its variables. Fortunately, VisIt allows user-defined 
macros that, when properly implemented, can both track the location of a particular material and 
export the location and temperature. Again, the objective of the Python macro described here 
was straightforward: record the DOP and temperature of the SCJ tip at each timestep. The 
flowchart depicted in figure 1 illustrates the desired algorithm. The starting point for the macro 
was a pseudocolor density plot of the 2-D axisymmetric simulation at the initial timestep.  

 

Figure 1. Flowchart depicting the basic algorithm of the macro.
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For clarity, the code discussion that follows is broken into subsections. Each subsection gives an 
overview of a block of the code that performs a simple task. The following line numbers are for 
discussion only and are not part of the actual script. These are meant to serve as reference points 
to assist in describing the syntax. To facilitate the full use or modification of the macro by 
interested users, the macro has been included in its entirety in the appendix.  

The first block of code (lines 1–3) determines the number of timesteps in a particular simulation 
and then outputs the value to the command line interface. Occasionally, complex ALEGRA 
simulations have been known to crash prior to reaching the ultimate desired length of time. If the 
total number of intended timesteps is known to the user, the output can serve as a useful quick-
check to verify whether or not a simulation ran to completion.     

1 # Determine the temporal extent of the simulation  
2 Total_Timesteps = TimeSliderGetNStates()  
3 print "Total number of timesteps = ", Total_Timesteps 
  

The second block of code (lines 4–34) performs one of the fundamental tasks in this evaluation:  
it reads and stores the location of a particular material parameter. In this case the material 
parameter read is the temperature of the RHA along the axis. The location that is stored as a 
variable is the front face of the RHA, which is used as a means of identifying the location of the 
surface of the target. To perform this task, a new window is opened, and the temperature of the 
RHA (material 7) is plotted (lines 7–11). The maximum and minimum y-coordinates of the 
simulation are then determined on lines 12 and 13. Because this simulation was axisymmetric, 
the trajectory of the SCJ was known a priori to be along the y-axis. Once the maximum and 
minimum coordinates are known, the Lineout function (line 18) is called using the maximum and 
minimum points along the y-axis as inputs. In an additional window, the Lineout function plots 
the default variable, i.e., the temperature, along with the coordinates. After these variables have 
been plotted, the GetPlotInformation function reads the simulation data into user-defined 
variables so they can be used in calculations or stored to be exported. The code then selects the 
location of the first nonzero value of the temperature as the front face of the RHA and records 
the coordinates. This location is used as the origin to measure the DOP. Finally, once the 
appropriate data has been read, the two plot windows that were opened by the RHA temperature 
plot and the Lineout function are closed.        

  4 # Identify a reference location for the measurement.  
  5 # In this case, the outer edge of the RHA (material 7)  
  6 SetTimeSliderState(0)  
  7 AddWindow()  
  8 SetActiveWindow(2)  
  9 AddPlot("Pseudocolor", "TEMPERATURE_7", 1, 0)  
10 ResetView()  
11 DrawPlots()  
12 View2DAtts = GetView2D()  
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13 D = list(View2DAtts.windowCoords)  
14 p0 = (0, D[2])  
15 p1 = (0, D[3])  
16 DefineScalarExpression("x", "coord(Mesh) [0]")  
17 DefineScalarExpression("y", "coord(Mesh) [1]")  
18 Lineout(p0, p1 , ("default", "x", "y"))  
19 SetActiveWindow(3)  
20 SetActivePlots(0)  
21 Temperature = GetPlotInformation()["Curve"]  
22 SetActivePlots(l)  
23 x = GetPlotInformation()["Curve"]  
24 SetActivePlots(2)  
25 y = GetPlotInformation()["Curve"]  
26 Temperature_RHA = list(Temperature)  
 
27 ct = 1  
28 while Temperature_RHA[ct] == 0:  
29    ct = ct+2  
30 RHA_start = y[ct]  
31 print "RHA starting location =  ", RHA_start 
32 DeleteWindow()  
33 SetActiveWindow(2)  
34 DeleteWindow() 

The next block of code (lines 35–78) loops through each output timestep in the simulation 
Exodus file. Similar to the method used in the previous block of code, the temperature variable is 
used here. The DOP, time, and tip temperatures are all stored as list variables. Again, for the 
purposes of measuring the DOP, the front face of the RHA is used as a reference. Thus, as 
illustrated in figure 2, the DOP values are negative until the SCJ tip reaches the RHA. At each 
timestep, the current tip temperature, DOP, and simulation time are appended to the 
corresponding list variable.     

35 # Loop through the meat of the analysis. At each timestep,  
36 # calculate the depth of penetration, the temperature, and  
37 # record the along with the time  
38 DOP_List = range(Total_Timesteps)  
39 Time_List = range(Total_Timesteps)  
40 Tip_Temp_List = range(Total_Timesteps)  
41 for i in range(Total_Timesteps):  
42    SetTimeSliderState(i)  
43    AddWindow()  
44    SetActiveWindow(2)  
45    AddPlot("Pseudocolor", "TEMPERATURE_1", 1, 0)  
46    ResetView( )  
47    DrawPlots()  
48    View2DAtts = GetView2D()  
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49    D = list(View2DAtts.windowCoords)  
50    pl = (0, D[2])  
51    p0 = (0, D[3])  
52    DefineScalarExpression("x", "coord(Mesh)[0]")  
53    DefineScalarExpression("y", "coord(Mesh)[1]")  
54    Lineout(p0, p1, ("default", "x", "y"))  
55    SetActiveWindow(3)  
56    SetActivePlots(0)  
57    Temperature = GetPlotInformation () ["Curve"]  
58    SetActivePlots(l)  
59    x = GetPlotInformation () ["Curve"]  
60    SetActivePlots(2)  
61    y = GetPlotInformation () ["Curve"]  
62    Temperature_Cu = list(Temperature)  
63    ct = 1  
64    while Temperature_Cu[ct] == 0:  
65 ct = ct+2  
66    Cu_end = y[ct]  
67    print "Cu tip ending location =" Cu end  
68    DeleteWindow( )  
69    SetActiveWindow(2)  
70    DeleteWindow( )  
71    DOP = Cu end - RHA start 
72    print "Current depth of penetration ", DOP  
73    DOP_List[i] = DOP  
74    print "Current tip temperature = ", Temperature_Cu[ct]  
75    Tip_Temp_List[i] = Temperature_Cu[ct]  
76    Query("Time")  
77    Time_List[i] = GetQueryOutputValue()     
78 print "Final depth of penetration = ", DOP, "\n"  
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Figure 2. Several snapshots of single frames of the simulation illustrating the sign convention used for the 
DOP. Until the tip of the SCJ reaches the RHA, the DOP is negative, indicating the distance that 
remains for the tip to travel prior to reaching the RHA.   

The final portion of the code is a method to save the three list variables into a single text file 
(lines 79–92). This text file can be easily imported into a spreadsheet or graphing software for 
analysis. In the specified directory, the open function on line 80 will create a new file, 
filename.txt, if it does not exist or overwrite an existing file with that name.  In order to output 
the variables, each list is converted to a string. When this conversion occurs, brackets are 
automatically included as characters in the string. To simplify the data processing, prior to 
writing the data to the text file the macro removes the brackets. (Note: The second argument in 
the replace field of the string variables on lines 82, 83, 85, 86, 88, and 89 is a single open quote 
directly followed by a single close quote.)    

79 # Output the time and the DOP  
80 f = open('/home/username/Desktop/filename.txt', 'w')  
81 S1 = str(Time_List)  
82 S1 = S1.replace('[', '')  
83 S1 = S1.replace(']', '')  
84 S2 = str(DOP_List)  
85 S2 = S2.replace('[', '')  
86 S2 = S2.replace(']', '')  
87 S3 = str(Tip_Temp_List)  
88 S3 = S3. replace('[', '')  
89 S3 = S3. replace(']', '')  
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90 output = S1 + "\n" + S2 + "\n" + S3  
91 f.write(output)  
92 f.close () 

Once the data have been imported into a spreadsheet or graphing software, they can easily be 
plotted. Figures 3 and 4 illustrate example plots of the data output by the macro. Figure 3 is a 
plot of the DOP versus time, and figure 4 is a plot of the temperature versus the SJC tip location 
relative to the RHA. 

 
Figure 3. Plot of the DOP versus time for an SCJ as recorded by the VisIt macro. Note 

that the DOP is negative until the tip of the SCJ reaches the front face of the  
RHA. 
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Figure 4. The variation in temperature of the tip of an SCJ with respect to its distance 

from the front face of the RHA as recorded by the VisIt macro.  

3. Conclusion 

In summary, this report describes a macro that automates the extraction of data from ALEGRA 
simulations using the VisIt visualization software. Although the analysis discussed here was for a 
2-D axisymmetric simulation, the basic function of the macro can be generalized for any 
simulation. In addition, automating the extraction of temporally dependent material parameters 
provides the added benefit of extrapolating the endpoint should the simulation not run to 
completion. The macro described in this report should provide a valuable starting point for any 
ALEGRA user who would like to automatically extract temporally and spatially varying data 
from a simulation.
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Appendix. Full Python Macro for Extracting the Depth of Penetration and the 
Temperature as Functions of Time  

                                                 
  This appendix appears in its original form, without editorial change. 
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# Determine the temporal extent of the simulation  
Total_Timesteps = TimeSliderGetNStates()  
print "Total number of timesteps = ", Total_Timesteps  
 
# Identify a reference location for the measurement.  
# In this case, the outer edge of the RHA (material 7)  
SetTimeSliderState(0)  
AddWindow()  
SetActiveWindow(2)  
AddPlot("Pseudocolor", "TEMPERATURE_7", 1, 0)  
ResetView()  
DrawPlots()  
View2DAtts = GetView2D()  
D = list(View2DAtts.windowCoords)  
p0 = (0, D[2])  
p1 = (0, D[3])  
DefineScalarExpression("x", "coord{Mesh) [0]")  
DefineScalarExpression("y", "coord{Mesh) [1]")  
Lineout(p0, p1 , ("default", "x", "y"))  
SetActiveWindow(3)  
SetActivePlots(0)  
Temperature = GetPlotInformation()["Curve"]  
SetActivePlots(l)  
x = GetPlotInformation()["Curve"]  
SetActivePlots(2)  
y = GetPlotInformation()["Curve"]  
Temperature_RHA = list(Temperature)  
 
ct = 1  
while Temperature_RHA[ct] == 0:  
   ct = ct+2  
RHA_start = y[ct]  
print "RHA starting location =  ", RHA_start 
DeleteWindow()  
SetActiveWindow(2)  
DeleteWindow()  
 
# Loop through the meat of the analysis. At each timestep,  
# calculate the depth of penetration, the temperature, and  
# record them along with the time  
DOP_List = range(Total_Timesteps)  
Time_List = range(Total_Timesteps)  
Tip_Temp_List = range(Total_Timesteps)  
for i in range(Total_Timesteps):    
   SetTimeSliderState(i)  
   AddWindow()  
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   SetActiveWindow(2)  
   AddPlot("Pseudocolor", "TEMPERATURE_1", 1, 0)  
   ResetView( )  
   DrawPlots()  
   View2DAtts = GetView2D()  
   D = list(View2DAtts.windowCoords)  
   pl = (0, D[2])  
   p0 = (0, D[3])  
   DefineScalarExpression("x", "coord(Mesh)[0]")  
   DefineScalarExpression("y", "coord(Mesh)[1]")  
   Lineout(p0, p1, ("default", "x", "y"))  
   SetActiveWindow(3)  
   SetActivePlots(0)  
   Temperature = GetPlotInformation () ["Curve"]  
   SetActivePlots(l)  
   x = GetPlotInformation () ["Curve"]  
   SetActivePlots(2)  
   y = GetPlotInformation () ["Curve"]  
   Temperature_Cu = list(Temperature)  
   ct = 1  
   while Temperature_Cu[ct] == 0:  

ct = ct+2  
   Cu_end = y[ct]  
   print "Cu tip ending location =" Cu end  
   DeleteWindow( )  
   SetActiveWindow(2)  
   DeleteWindow( )  
   DOP = Cu end - RHA start  
   print "Current depth of penetration ", DOP  
   DOP_List[i] = DOP  
   print "Current tip temperature = ", Temperature_Cu[ct]  
   Tip_Temp_List[i] = Temperature_Cu[ct]  
   Query("Time")  
   Time_List[i] = GetQueryOutputValue()  
    
print "Final depth of penetration = ", DOP, "\n"  
# Output the time and the DOP  
f = open('/home/username/Desktop/filename.csv', 'r+')  
S1 = str(Time_List)  
S1 = S1.replace('[', '')  
S1 = S1.replace(']', '')  
S2 = str(DOP_List)  
S2 = S2.replace('[', '')  
S2 = S2.replace(']', '') 
S3 = str(Tip_Temp_List)  
S3 = S3. replace('[', '')  
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S3 = S3. replace(']', '')  
output = S1 + "\n" + S2 + "\n" + S3  
f.write(output)  
f.close () 
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